AF3313 Corporate Finance Review Notes
Made by Ziyang CHEN, Rocky, 陈子阳
Chapter 02
$$
\bf CF(A) = OCF - CS - ΔNWC
$$
CF(A) = CF(B) + CF(S)
Debt (Cash Flow to Creditors, CF(B) ) = Interest - change of debt = Interest - (New debt - Retirement/payback/redeemed of debt)
Equity (Cash Flow to Stockholders, CF(S) ) = Dividends + Repurchase of stock - new stock issue
Operating cash flow(OCF) = EBIT + Depreciation – Taxes = Net income + Depreciation = Sales - Costs - Taxex = (Sales - Costs)(1-T) + Depreciation*T
Capital spending = 购买/维修 PPE = Purchase(Acquisitions) of fixed assets - Sales of fixed assets
Additions to net working capital = ΔNWC = change of NWC -> sum = 0
- Net Working Capital (NWC) = current asset - current liability
Income Statement
Sales |
---|
- Cost of goods sold |
- Selling costs/expenses |
- Depreciation |
EBIT |
- Interest |
Taxable income |
- Taxes (Current + Deffered) |
**= Net income **(Addition to retained earnings + Dividends) |
OCF |
---|
- Capital spending (购买/维修 PPE) |
- NWC (sum=0) |
= incremental Cash Flow, CF(A) |
Chapter 04. Discounted Cash Flow Valuation
The One-Period Case
$$
\bf FV=C_0(1+r)\ \ \ \ \ \ \ \ \ \ PV=\frac{C_1}{1+r}
$$The Multiperiod Case
Compounding 复利和Compounding Periods 多年期复利, 拿现在的钱去算将来的钱
r代表一个单位,T代表一共多少个单位
$$
\bf FV=C_0(1+r)^T\ \ ➡️\ \ FV=C_0(1+\frac{r}{m})^{mT}
$$Present Value and Discounting 现金与折现, 拿将来的钱去算现在的钱
$$
\bf PV=\frac{C_T}{(1+r)^T}
$$
Simplifications 简化
PV 算的是 one period before the first payment
Perpetuity 永续年金: 源源不断的现金流 (生命周期无限)
$$
\bf PV=\frac{C}{r}
$$Growing perpetuity 增长性永续年金: 能始终以某固定的增长率保持增长的一系列现金流 (生命周期无限 + 有增长率g)
$$
\bf PV=\frac{C}{r-g}
$$Annuity 年金: 一系列稳定有规律的、**持续一段固定时期(T)**的现金收付活动 (生命周期有限T)
$$
\bf PV=\frac{C}{r}[1-\frac{1}{(1+r)^T}]
\\bf FV = PV(1+r)^T
$$Growing annuity 增长型年金: **在一定时期内(T)**,保持以固定比率增长的一系列现金流 (生命周期有限T + 有增长率g)
$$
\bf PV=\frac{C}{r-g}[1-(\frac{1+g}{(1+r)})^T]
$$
Chapter 05. NPV & Other Investment Rules
Independent Projects(独立项目),可以都选。
Mutually Exclusive Projects(互斥项目),只能二选一。
- Net Present Value (NPV): 越高越好
NPV is the sum of the present value of the cash flows from the project
最低可接受法则为:如果 NPV >0,则接受项目
排序法则:选择NPV最高的项目
$$
\bf NPV=C_0+\frac{C_1}{1+r}+\frac{C_2}{(1+r)^2}+…+\frac{C_t}{(1+r)^t}=C_0+\sum_{t=1}^T \frac{C_t}{(1+r)^t}\\bf C_0=positive\ cash\ flows,\ represents\ cash\ receipts\
\bf C_0=negative\ cash\ flow,\ represents\ cash\ payment
$$
- Profitability Index (PI): 选>0
$$
\bf PI_2=\frac{PV}{-C_0}=\frac{\frac{C_1}{(1+r)}+\frac{C_2}{(1+r)^2}+…+\frac{C_T}{(1+r)^T}}{-C_0}\ (accept,\ if\ PI_2>1)\\ PI_1 和 PI_2 在项目选择方面应该有相同的答案,因为它们等同于数字相差1
$$
Discount Payback Period (DPB): 越小越好
how long it takes to payback on a discounted basis 在折扣的基础上需要多长时间才能收回
$$
\bf Cash\ Flow\ of\ Present\ Value(PV) = \frac{C_T}{(1+r)^T}
$$
Chapter 06. Making Capital Investment Decisions
- Incremental Cash Flows = Cash Flow From Assets (CFFA)
$$
\bf Earnings ≠ Cash
$$
- if the value is positive then it is a cash inflow. If the value is negative, then it is a cash outflow
$$
\bf CFFA = OCF - CS - ΔNWC
\\bf CS = capital\ spending\ (购买/维修\ PPE)
\\bf ΔNWC=change\ in\ net\ working\ capital\ (current\ assets-current\ liabilities)
$$
Operating Cash Flows (OCFs)
- 公司运营产生的现金流量
$$
\bf Bottom\ Up:\ OCF = Net Income + depreciation
\\bf Top\ Down: OCF = Sales – Costs – Taxes
\\bf Tax\ Shield: OCF = (Sales – Costs)(1 – T) + Depreciation*T\ (T是税率)
\\bf Net\ Income(NI)=(sales-costs)-Depreciation
$$
- 公司运营产生的现金流量
Change in Net working Capital (ΔNWC)
After-tax Salvage, salvage = Market value
$$
\bf After\ tax\ salvage = Salvage – T(Salvage\ –\ Book\ value)=MV-T(MV-BV)
$$
Lecture 06 Chapter 26-28
$$
\bf Inventory\ turnover=\frac{Cost\ of\ Good\ Sold}{Average\ inventory}
\\bf Inventory\ period=\frac{365}{Inventory\ turnover}
\——————————————
\\bf Accounts\ Receivable\ turnover=\frac{Sales}{Average\ Accounts\ receivable}
\\bf Accounts\ Receivable\ period=\frac{365}{Accounts\ receivable\ turnover}
\——————————————
\\bf Accounts\ Payable\ turnover=\frac{Cost\ of\ Good\ Sold}{Average\ Accounts\ Payable}
\\bf Accounts\ Payable\ period=\frac{365}{Accounts\ Payable\ turnover}
$$
- Credit Management
$$
\bf One\ Time\ Sale:\ NPV = -v + \frac{(1 - \pi)P}{(1 + r)}
\\bf Repeat\ Customers:\ NPV = -v + \frac{(1-\pi)(P – v)}{r},\ \ \ defaults\ once,\ NO\ grant\ credit\ again
\\bf \ \ v=variable\ cost;\ \pi =default\ probability\ 违约率;\ P=current\ price;\ r=required\ return\ rate
$$
Chapter 08-09 Valuation of Bonds & Stocks
Bond (债券)
$$
\bf Bond\ value = \frac{C}{r} × [{1-\frac{1}{(1+r)^T}}]+\frac{FV}{(1+r)^T}
\\bf C: Coupon\ paid\ each\ period=Coupon\ rate*FV
\\bf interest\ rates ⬆️\ present\ values ⬇️,\ interest\ rates ⬆️\ bond\ prices ⬇️
$$Stocks (股票)
Zero Growth (Dividends will remain at the sa‘;me level forever) 生命周期无限,未来现金流是恒定的
$$
\bf P_0=\frac{Div_1}{R}
$$Constant Growth (Dividends will grow at a constant rate “g“, forever) 生命周期无限,未来现金流永远以 g 增长
$$
\bf P_0=\frac{Div_1}{R-g}\\bf R(cost\ of\ equity)=Dividend\ yield+Capital\ gains\ yeild=\frac{Div_1}{P_0}+g
$$Differential Growth (Dividends will *grow at rate g1 for N years* and *grow at rate g2 thereafter*.
$$
\bf P_0=\frac{C_0×(1+g_1)}{r-g_1}[1-\frac{(1+g_1)^T}{(1+r)^T}]+\frac{\frac{C_0×(1+g_1)^T(1+g_2)}{R-g_2}}{(1+r)^T}
\——————————————-
\\bf P_n=\frac{last\ divident\ forever}{r}
\\bf P_0=\frac{C_1}{(1+r)}+\frac{C_2}{(1+r)^2}+…+\frac{C_n+P_n}{(1+r)^n}
$$
Chapter 11 The Capital Asset Pricing Model
Portfolios (证券投资组合)
Capital Asset Pricing Model (CAPM)
Capital market line (CML)
Final
Debt(Creditors) versus Equity(Shareholder)
- Creditors generally receive the first claim on the firm’s cash flow, and they receive a fixed interest rate regardless of the performance of the business.
- Shareholder’s equity is the residual difference between assets and liabilities, and they receive dividends or capital gains only if the business makes enough profit.
- Shareholder’s equity take on more risk but also have a greater return than debt holders (Creditors).
The dividend growth model calculates total return, the total return of stock:
- The required return (R) has two components.
- Dividend yield (Div/P): This is calculated as the expected cash dividend (D) divided by the current price (P).
- Capital gains yield / Dividend growth rate (g): The rate at which the value of the investment grows.
The CAPM suggests that the expected return is a function of
**Risk-free rate of return: **is the pure time value of money.
**Beta: **is the amount of systematic risk present in a particular asset. 特定资产中存在的系统性风险
Market risk premium: is the reward for bearing systematic risk. 承担系统性风险的回报
A flexible short-term finance policy would maintain a high ratio of current assets to sales.
- Keeping large cash balances and investments in marketable securities
- Large investments in inventory
- Liberal credit terms
A restrictive short-term finance policy would maintain a low ratio of current assets to sales.
- Keeping low cash balances, no investment in marketable securities
- Making small investments in inventory
- Allowing no credit sales (thus no accounts receivable)